Article information

2021 , Volume 26, ¹ 4, p.73-81

Litvintsev K.Y., Dekterev A.A., Kirik E.S., Vitova T.B.

The mathematical foundation of a software package for assessing the probability of a viral infection in massively occupied buildings

The current COVID-19 pandemic has shown that decision-making authorities lack tools that would allow them to make informed decisions on the introduction of quarantine measures related to either holdingor canceling mass events in buildings. Often this leads either to the intro duction of excessive (which leads to a worsening of the economic situation) or insufficient measures (which leads to a worsening of the epidemiological situation). This article describes the mathematical basic principles aimed at creating a software package for assessing the likelihood of contracting a viral infection transmitted by airborne droplets in massively occupied buildings.

Evaluation of the likelihood of COVID-19 infection in public places is possible based on a joint analysis of the results of the people movement simulation, air circulation and the spread of aerosols from a carrier of the infection, taking into account the applied methods of protection (masks,ventilation). It is required to develop methods for assessing the danger of COVID-19 infection from a carrier of the virus and the methods of protection used (masks, ventilation) in specific public places. Simultaneously, the movement of people in accordance with the mode of operation, air movement(including ventilation systems) and the spread of respiratory aerosols needs to be accounted for

[full text]
Keywords: viruses, aerosols, numerical simulation, ventilation, pedestrian dynamics, risk of infection

doi: 10.25743/ICT.2021.26.4.007

Author(s):
Litvintsev Kirill Yurievich
PhD.
Position: Research Scientist
Office: Researcher of the Institute of Thermophysics of SB RAS
Address: 660036, Russia, Krasnoyarsk, Krasnoyarsk, Akademgorodok 50/44
Phone Office: (391) 2494726
E-mail: sttupick@yandex.ru
SPIN-code: 4034-9004

Dekterev Alexandr Anatolyevich
PhD.
Position: Senior Research Scientist
Office: Institute of Thermophysics SB of RAS
Address: 660090, Russia, Novosibirsk, avenue Akademika Lavrenteva,1
Phone Office: (391) 2494726
E-mail: dekterev@mail.ru
SPIN-code: 9100-0502

Kirik Ekaterina Sergeevna
PhD.
Position: Senior Research Scientist
Office: Institute of Computational Modeling of Siberian Branch of the Russian Academy of Sciences
Address: 660036, Russia, Krasnoyarsk, Akademgorodok 50/44
Phone Office: (391) 2907476
E-mail: kirik@icm.krasn.ru
SPIN-code: 8934-5681

Vitova Tatyana Bronislavovna
PhD.
Position: Junior Research Scientist
Office: Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences
Address: 660036, Russia, Krasnoyarsk, Akademgorodok 50/44
Phone Office: (923)3671605
E-mail: vitova@icm.krasn.ru
SPIN-code: 7105-3456

References:
1. Wang B., Wu H., Wan X. Transport and fate of human expiratory droplets — A modelling approach. Physics of Fluids. 2020; 32(8):083307. DOI:10.1063/5.0021280.

2. Blocken B., Malizia F., van Druenen T., Marchal T. Towards aerodynamically equivalent COVID-19 1.5 m social distancing for walking and running. (Preprint). 12 p. Available at: http://www.urbanphysics.net/COVID19_Aero_Paper.pdf (accessed 21.04.2020).

3. Mittal R., Ni R., Seo J.-H. The flow physics of COVID-19. Journal of Fluid Mechanics. 2020; (894):F2. DOI:10.1017/jfm.2020.330.

4. Bourouiba L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. Journal of the American Medical Association. 2020; 323(18):1837–1838. DOI:10.1001/jama.2020.4756.

5. Asadi S., Bouvier N., Wexler A.S., Ristenpart W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Science and Technology. 2020; 54(6):635–638. DOI:10.1080/02786826.2020.1749229.

6. Dbouk T., Drikakis D. On respiratory droplets and face masks. Physics of Fluids. 2020; 32(6):063303. DOI:10.1063/5.0015044.

7. Xie X., Li Y., Sun H., Liu L. Exhaled droplets due to talking and coughing. Journal of the Royal Society Interface. 2009; 6(SUPPL. 6):S703–S714. DOI:10.1098/rsif.2009.0388.focus.

8. Han Z.Y., Weng W.G., Huang Q.Y. Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of the Royal Society Interface. 2013; 10(88):20130560.DOI:10.1098/rsif.2013.0560.

9. Yang S., Lee G.W.M., Chen C.-M., Wu C.-C., Yu K.-P. The size and concentration of droplets generated by coughing in human subjects. Journal of Aerosol Medicine. 2007;20(4):484–494. DOI:10.1089/jam.2007.0610.

10. Tang J.W., Liebner T.J., Craven B.A., Settles G.S. A schlieren optical study of the human cough with and without wearing masks for aerosol infection control. Journal of the Royal Society Interface. 2009; 6(SUPPL. 6):727–736. DOI:10.1098/rsif.2009.0295.focus.

11. Pendar M.-R., Pascoa J.C. Numerical modelling of the distribution of virus carrying saliva droplets during sneeze and cough. Physics of Fluids. 2020; 32(8):0018432. DOI:10.1063/5.0018432.

12. Feng Y., Marchal T., Sperry T., Yi H. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. Journal of Aerosol Science. 2020; (147):105585. DOI:10.1016/j.jaerosci.2020.105585.8.

13. Busco G., Yang S.R., Seo J., Hassan Y.A. Sneezing and asymptomatic virus transmission. Physics of Fluids. 2020; 32(7):073309. DOI:10.1063/5.0019090.

14. De-Leon H., Pederiva F. Particle modelling of the spreading of coronavirus disease (COVID-19). Physics of Fluids. 2020; 32(8):087113. DOI:10.1063/5.0020565.

15. Litvintsev K.Yu., Kirik E.S., Dekterev A.A., Harlamov E.B., Malyshev A.V., Popel E.V. Design-analytical program complex “SIGMA PB” for modelling of fire growth and evacuation. Pozharnaya bezopasnost’. 2016; (4):51–59. (In Russ.)

16. Menter F.R. Zonal two equation k−ω turbulence models for aerodynamic flows. AIAA Paper. 1993;(93):2906. DOI:10.2514/6.1993-2906.

17. Zaichik L.I., Drobyshevsky N.I., Filippov A.S., Mukin R.V., Strizhov V.F. A diffusioninertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows. International Journal of Heat and Mass Transfer. 2010; 53(1–3):154–162. DOI:10.1016/j.ijheatmasstransfer.2009.09.044.

18. Kirik E., Malyshev A., Vitova T., Popel E., Kharlamov E. Pedestrian movement simulation for stadiums design. IOP Conference Series: Materials Science and Engineering. 2018; 456(1):012074. DOI:10.1088/1757-899X/456/1/012074.

19. Kirik E., Malyshev A. Computer simulation of pedestrian flows for Universiade 2019 sport facilities versus hand calculations. Proceedings of Pedestrian and Evacuation Dynamics 2016, Collective Dynamics. 2016: 446–454. DOI:10.17815/CD.2016.11.

Bibliography link:
Litvintsev K.Y., Dekterev A.A., Kirik E.S., Vitova T.B. The mathematical foundation of a software package for assessing the probability of a viral infection in massively occupied buildings // Computational technologies. 2021. V. 26. ¹ 4. P. 73-81
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2025 FRC ICT