Article information

2022 , Volume 27, ¹ 4, p.84-97

Das S., Rai S.

On M-polynomial and associated topological descriptors of subdivided Hex-derived network of type three

Topological indices have the numerical worth that usually describes the numerous properties of molecular graphs, such as physical, chemical, biological, etc. At the present time, it is very prevalent to calculate various degree-based topological indices by using the M-polynomial. Hex-derived networks are used extensively in the field of pharmaceutics, telecommunications networks, and electronics. In the current study, we construct the subdivided Hex-derived network of third type of dimension 𝑛 and obtain its corresponding M-polynomial. Further, we calculate the degree-based topological indices of the above network by using their direct formulas and alternatively from the exact expression of the M-polynomial. In addition, we sketch the M-polynomial and the related topological indices for different values of 𝑛. The attained results can set a foundation to explore further into subdivided Hex-derived networks, their properties and appliances

[full text] [link to elibrary.ru]

Keywords: M-polynomial, subdivided Hex-derived network of third type, degree-based topological indices, graph polynomial

doi: 10.25743/ICT.2022.27.4.007

Author(s):
Das Shibsankar
Position: Assistent
Office: Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi
Address: 221005, India, Varanasi
E-mail: shib.iitm@gmail.com

Rai Shikha
Position: Research Scientist
Office: Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi
Address: 221005, India, Varanasi
E-mail: shikharai48@gmail.com

References:
[1] West D.B. Introduction to graph theory. Second edition. Prentice Hall; 2001: 588

[2] Garc´ıa-Domenech R., G´alvez J., de Juli´an-Ortiz J.V., Pogliani L. Some new trends in chemical graph theory. Chemical Reviews. 2008; 108(3):1127–1169. DOI:10.1021/cr0780006.

[3] Gross J.L., Yellen J., Zhang P. Handbook of graph theory. 2nd edn. Discrete Mathematics and Its Applications: Chapman and Hall/CRC; 2013: 1192.

[4] Gutman I. The acyclic polynomial of a graph. Publications de I’Institut Math´ematique. 1977; 22(36):63–69. Available at: http://eudml.org/doc/255036.

[5] Deutsch E., Klavˇzar S. M-polynomial and degree-based topological indices. Iranian Journal of Mathematical Chemistry. 2015; 6(2):93–102. DOI:10.22052/ijmc.2015.10106.

[6] Farrell E.J. An introduction to matching polynomials. Journal of Combinatorial Theory. Series B. 1979; 27(1):75–86. DOI:10.1016/0095-8956(79)90070-4.

[7] Kauffman L.H. A Tutte polynomial for signed graphs. Discrete Applied Mathematics. 1989; 25(1–2):105–127. DOI:10.1016/0166-218X(89)90049-8.

[8] Zhang H., Zhang F. The Clar covering polynomial of hexagonal systems I. Discrete Applied Mathematics. 1996; 69(1–2):147–167. DOI:10.1016/0166-218X(95)00081-2.

[9] Hosoya H. On some counting polynomials in chemistry. Discrete Applied Mathematics. 1988; 19(1–3):239–257. DOI:10.1016/0166-218X(88)90017-0.

[10] Gutman I. Some relations between distance-based polynomials of trees. Bulletin (Acad´emie serbe des sciences et des arts. Classe des sciences math´ematiques et naturelles. Sciences math´ematiques). 2005; 131(30):1–7. DOI:10.2298/BMAT0530001G.

[11] Wiener H. Structural determination of paraffin boiling points. Journal of the American Chemical Society. 1947; 69(1):17–20. DOI:10.1021/ja01193a005.

[12] Randi´c M. Novel molecular descriptor for structure-property studies. Chemical Physics Let- ters. 1993; 211(4–5):478–483. DOI:10.1016/0009-2614(93)87094-J.

[13] Zuo X., Numan M., Butt S.I., Siddiqui M.K., Ullah R., Ali U. Computing topolog- ical indices for molecules structure of polyphenylene via M-polynomials. Polycyclic Aromatic Compounds. 2020: 1–10. DOI:10.1080/10406638.2020.1768413.

[14] Deutsch E., Klavˇzar S. On the M-polynomial of planar chemical graphs. Iranian Journal of Mathematical Chemistry. 2020; 11(2):65–71. DOI:10.22052/ijmc.2020.224280.1492.

[15] Das S., Rai S. M-polynomial and related degree-based topological indices of the third type of Hex-derived network. Nanosystems: Physics, Chemistry, Mathematics. 2020; 11(3):267–274. DOI:10.17586/2220-8054-2020-11-3-267-274.

[16] Das S., Rai S. M-polynomial and related degree-based topological indices of the third type of Hex-derived network. Malaya Journal of Matematik (MJM). 2020; 8(4):1842–1850. DOI:10.26637/MJM0804/0085.

[17] Rai S., Das S. M-polynomial and degree-based topological indices of subdivided chain Hex- derived network of type 3. Advanced Network Technologies and Intelligent Computing. Edited by Woungang I., Dhurandher S.K., Pattanaik K.K., Verma A., Verma P. Communications in Computer and Information Science (CCIS) Series. 2022; (1534):410–424.

[18] Das S., Rai S. Topological characterization of the third type of triangular Hex-derived networks. Scientific Annals of Computer Science. 2021; 31(2):145–161. DOI:10.7561/SACS.2021.2.145.

[19] Das S., Rai S. Degree-based topological descriptors of type 3 rectangular Hex-derived net- works. Bulletin of the Institute of Combinatorics and Its Applications. 2022; (95):21–37. Available at: http://bica.the-ica.org/Volumes/95//Reprints/BICA2021-26-Reprint.pdf.

[20] Julietraja K., Venugopal P. Computation of degree-based topological descrip- tors using M-polynomial for coronoid systems. Polycyclic Aromatic Compounds. 2020. DOI:10.1080/10406638.2020.1804415.
.
[21] Das S., Kumar V. On M-polynomial of the two-dimensional Silicon-Carbons. Palestine Journal of Mathematics. 2022; 11(Special Issue II):136–157.

[22] Deng H., Yang J., Xia F. A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes. Computers & Mathematics With Applications. 2011; 61(10):3017–3023. DOI:10.1016/j.camwa.2011.03.089.

[23] Gutman I., Trinajsti´c N. Graph theory and molecular orbitals. Total 𝜋-electron energy of alternant hydrocarbons. Chemical Physics Letters. 1972; 17(4):535–538. DOI:10.1016/0009- 2614(72)85099-1.

[24] Miliˇcevi´c A., Nikoli´c S., Trinajsti´c N. On reformulated Zagreb indices. Molecular Diver- sity. 2004; (8):393–399. DOI:10.1016/j.dam.2011.09.021.

[25] Randi´c M. Characterization of molecular branching. Journal of the American Chemical So- ciety. 1975; 97(23):6609–6615. DOI:10.1021/ja00856a001.

[26] Bollob´as B., Erdos P. Graphs of extremal weights. Ars Combinatoria. 1998; (50):225–233.

[27] Ami´c D., Beˇslo D., Luˇci´c B., Nikoli´c S., Trinajsti´c N. The vertex-connectivity in- dex revisited. Journal of Chemical Information and Computer Sciences. 1998; 38(5):819–822. DOI:10.1021/ci980039b.

[28] Vukiˇcevi´c D., Gasperov M. Bond additive modeling 1. Adriatic indices. Croatica Chem- ica Acta. 2010; 83(3):243–260.

[29] Sedlar J., Stevanovi´c D., Vasilyev A. On the inverse sum indeg index. Discrete Applied Mathematics. 2015; (184):202–212. DOI:10.1016/j.dam.2014.11.013.

[30] Furtula B., Graovac A., Vukiˇcevi´c D. Augmented Zagreb index. Journal of Mathematical Chemistry. 2010; 48(2):370–380. DOI:10.1007/s10910-010-9677-3.

[31] Favaron O., Mah´eo M., Sacl´e J.-F. Some eigenvalue properties in graphs (conjectures of Graffiti-II). Discrete Mathematics. 1993; 111(1–3):197–220.

[32] Ahmad M., Hussain M., Saeed M., Farooq A. On topological invariants of subdivided hexderived network SHDN 1(). Journal of Mathematical Analysis. 2018; 9(3):97–109. Avail- able at: https://www.researchgate.net/publication/337317778.

[33] Nocetti F.G., Stojmenovic I., Zhang J. Addressing and routing in hexagonal networks with applications for tracking mobile users and connection rerouting in cellular networks. IEEE Transactions on Parallel and Distributed Systems. 2002; 13(9):963–971. DOI:10.1109/TPDS.2002.1036069.

[34] Manuel P., Bharati R., Rajasingh I., Monica M.C. On minimum metric dimension of honeycomb networks. Journal of Discrete Algorithms. 2008; 6(1):20–27. DOI:10.1016/j.jda.2006.09.002.

[35] Raj F.S., George A. On the metric dimension of HDN 3 and PHDN 3. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). 2017: 1333–1336. DOI:10.1109/ICPCSI.2017.8391927.

Bibliography link:
Das S., Rai S. On M-polynomial and associated topological descriptors of subdivided Hex-derived network of type three // Computational technologies. 2022. V. 27. ¹ 4. P. 84-97
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2025 FRC ICT