Article information
2025 , Volume 30, ¹ 1, p.89-103
Soloveichik Y.G., Persova M.G., Leonovich D.A., Kiselev D.S.
An approach to accounting hydrostatic head in wells for finite element modelling of the pressure field in oil production problems
The paper proposes an approach to finite element calculation of the pressure field in oil producti on problems, which, without an iterative process, ensures correspondence of pressure distribution along the wellbore to hydrostatic head in the case mixture productions or agent injection, are specified at the wells. To do this, special boundary conditions, which ensure the appropriate distribution of production or injection along the wells, are proposed. We obtain relations for calculating the components of the matrix and the vector of the finite element system of equations, along with the special boundary conditions, which lead to additional relationships between the components of the weight vector for mesh nodes at the boundaries approximating well perforation zones. Computational experiments, which are carried out for a highly heterogeneous model of an oil reservoir, show that the proposed mathematical model allows obtaining both distribution of productions or injections at wells and pressure field that varies along each well in accordance with the hydrostatic head without iterative process. The results of computational experiments show that without using the proposed procedure for “equalizing” the pressure along a well in accordance with the hydrostatic head, the calculated production indicators, including oil production and water cut, are incorrect.
[link to elibrary.ru]
Keywords: finite element 3D modelling of pressure field, multiphase flow problems, heterogeneous porous media, hydrostatic head
doi: 10.25743/ICT.2025.30.1.009
Author(s): Soloveichik Yuri Grigor'evich Dr. , Professor Position: Leading research officer Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
E-mail: soloveychik@ami.nstu.ru SPIN-code: 7856-7702Persova Marina Gennad'evna Dr. , Professor Position: Head of Laboratory Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
E-mail: mpersova@mail.ru SPIN-code: 5788-0453Leonovich Daryana Alexandrovna Position: Junior Research Scientist Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
E-mail: leonovich.d.a@yandex.ru SPIN-code: 9833-1783Kiselev Dmitry Sergeevich PhD. Position: Research Scientist Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
E-mail: harlequin_00@mail.ru SPIN-code: 4892-2890 References: 1. Dang C., Nghiem L., Nguyen N., Yang C., Chen Z., Bae W. Modeling and optimization of alkaline-surfactant-polymer flooding and hybrid enhanced oil recovery processes. Journal of Petroleum Science and Engineering. 2018; (169):578–601. DOI:10.1016/j.petrol.2018.06.017.
2. Zhao H., Xu L., Guo Z., Liu W., Zhang Q., Ning X., Li G., Shi L. A new and fast waterflooding optimization workflow based on INSIM-derived injection efficiency with a field application. Journal of Petroleum Science and Engineering. 2019; (179):1186–1200. DOI:10.1016/j.petrol.2019.04.025.
3. Bukshtynov V., Volkov O., Durlofsky L.J., Aziz K. Comprehensive framework for gradient-based optimization in closed-loop reservoir management. Computational Geosciences. 2015; (19):877–897. DOI:10.1007/s10596-015-9496-5.
4. Shirangi M.G., Durlofsky L.J. Closed-loop field development under uncertainty by use of optimization with sample validation. SPE Journal. 2015; 20(05):908–922. DOI:10.2118/173219-pa.
5. Persova M.G., Soloveichik Y.G., Ovchinnikova A.S., Patrushev I.I., Nasybullin A.V.,Orekhov E.V. On the approach to oil production optimization using chemical stimulation methods. Neftyanoe Khozyaystvo. 2023; (3):42–47. DOI:10.24887/0028-2448-2023-3-42-47. (In Russ.)
6. Jackson M.D., Gomes J.L.M.A., Mostaghimi P., Percival J.R., Tollit B.S., Pavlidis D.,Pain C.C., El-Sheikh A.H., Muggeridge A.H., Blunt M.J. Reservoir modeling for flow simulation using surfaces, adaptive unstructured meshes and control-volume finite-element methods. SPEReservoir Simulation Symposium. 2013: 774–792. DOI:10.2118/163633-ms.
7. Doyle B., Riviere B., Sekachev M. A multinumerics scheme for incompressible two-phase flow. Computer Methods in Applied Mechanics and Engineering. 2020; (370):113213. DOI:10.1016/j.cma.2020.113213.
8. Abd A.S., Abushaikha A. Velocity dependent up-winding scheme for node control volume finite element method for fluid flow in porous media. Scientific Reports. 2020; (10):1–13. DOI:10.1038/s41598-020-61324-4.
9. Jo G., Kwak D.Y. An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid. Computer Methods in Applied Mechanics and Engineering. 2017; (317):684–701. DOI:10.1016/j.cma.2017.01.005.
10. Scovazzi G., Wheeler M.F., Mikelic A., Lee S. Analytical and variational numerical methods for unstable miscible displacement flows in porous media. Journal of Computational Physics. 2017; (335):444–496. DOI:10.1016/j.jcp.2017.01.021.
11. Abushaikha A.S., Blunt M.J., Gosselin O.R., Pain C.C., Jackson M.D. Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs. Journal of Computational Physics. 2015; (298):41–61. DOI:10.1016/j.jcp.2015.05.024.
12. Bochev P.B., Dohrmann C.R. A computational study of stabilized, low-order C0 finite element approximations of Darcy equations. Computational Mechanics. 2006; (38):323–333. DOI:10.1007/s00466-006-0036-y.
13. Jha B., Juanes R. A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotechnica. 2007; (2):139–153. DOI:10.1007/s11440-007-0033-0.
14. Zhang N., Yan B., Sun Q., Wang Y. Improving multiscale mixed finite element method for flow simulation in highly heterogeneous reservoir using adaptivity. Journal of Petroleum Science and Engineering. 2017; (154):382–388. DOI:10.1016/j.petrol.2017.04.012.
15. Odsæter L.H., Kvamsdal T., Wheeler M.F. A postprocessing technique to produce locally conservative flux. 28th Nordic Seminar on Computational Mechanics. Proceedings of the NSCM28, Tallinn, CENS. Institute of Cybernetics at Tallinn University of Technology; 2015:129–132. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b634d7570ec0965feb2ad16737afe5efae80d4a7#page=131 (accessed on December 19, 2024).
16. Odsæter L.H., Wheeler M.F., Kvamsdal T., Larson M.G. Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media. Computer Methods in Applied Mechanics and Engineering. 2017; (315):799–830. DOI:10.1016/j.cma.2016.11.018.
17. Persova M.G., Soloveichik Y.G., Vagin D.V., Grif A.M., Kiselev D.S., Patrushev I.I.,Nasybullin A.V., Ganiev B.G. The design of high-viscosity oil reservoir model based on the inverse problem solution. Journal of Petroleum Science and Engineering. 2021; (199):108245. DOI:10.1016/j.petrol.2020.108245.
18. Soloveichik Y.G., Persova M.G., Grif A.M., Ovchinnikova A.S., Patrushev I.I.,Vagin D.V., Kiselev D.S. A method of FE modeling multiphase compressible flow in hydrocarbon reservoirs. Computer Methods in Applied Mechanics and Engineering. 2022; (390):114468. DOI:10.1016/j.cma.2021.114468.
19. Persova M.G., Soloveichik Yu.G., Grif A.M. Flow balancing in modeling of multi-phase flow using non-conformal finite element meshes. Ðrogrammnaya Ingeneria. 2021; 12(9):450–458. DOI:10.17587/prin.12.450-458. (In Russ.)
20. Persova M.G., Soloveichik Yu.G., Patrushev I.I., Ovchinnikova A.S. Application of the finite element grouping procedure to improve the efficiency of modeling of a nonstationary multiphase flow in highly heterogeneous three-dimensional porous media. Vestnik Tomskogo Gosudarstvennogo Universiteta. Upravlenie, Vychislitel’naya Tekhnika i Informatika (Tomsk State University Journal of Control and Computer Science). 2021; (57):34–44. DOI:10.17223/19988605/57/4. (In Russ.)
21. Lawal K.A., Olamigoke O. On the optimum operating temperature for steam floods. SN Applied Sciences. 2021; 3(1):9. DOI:10.1007/s42452-020-04082-2.
22. Liu P., Zhang Y., Liu P., Zhou Y., Qi Z., Shi L., Xi C., Zhang Z., Wang C., Hua D. Experimental and numerical investigation on extra-heavy oil recovery by steam injection using vertical injector-horizontal producer. Journal of Petroleum Science and Engineering. 2021; (205):108945. DOI:10.1016/j.petrol.2021.108945.
23. Mir H., Siavashi M. Whole-time scenario optimization of steam-assisted gravity drainage (SAGD) with temperature, pressure, and rate control using an efficient hybrid optimization technique. Energy. 2022; (239):122149. DOI:10.1016/j.energy.2021.122149.
24. Christie M.A., Blunt M.J. Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reservoir Evaluation & Engineering. 2001; 4(04):308–317. DOI:10.2118/72469-PA. Bibliography link: Soloveichik Y.G., Persova M.G., Leonovich D.A., Kiselev D.S. An approach to accounting hydrostatic head in wells for finite element modelling of the pressure field in oil production problems // Computational technologies. 2025. V. 30. ¹ 1. P. 89-103
|