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Introduction

The linear advection equation is solved in a different way, i.e. by applying Hermite approxi-
mations based on piecewise quadratic, cubic and fifth degree polynomials with small compact
support. This also means that the initial-boundary problems can be solved in a different way
than the very well known way used in the numerical approximation by finite element methods
with Lagrange elements or numerical approximation by finite difference methods. This is not
a theoretical paper. It presents some new numerical methods for solving partial differential
equations. In authors’ opinion it could be an inspiration for the theoretical mathematicians
to give a precise description of finite element methods with Hermite approximations for solv-
ing partial differential equations and their systems of parabolic and hyperbolic types. In our
opinion these solutions are better than those based on finite difference methods and finite
element methods with Lagrange elements. The fundamentals of the theory of finite element
methods (FEM) were initially developed by Zienkiewicz, Taylor, Strang and Fix in the late
1960s and early 1970s [1-8]. In the following years, some authors [9-11] discussed mainly
the mathematical theory of FEM (Brenner and Scott [12], Di Pietro and Ern [13]; Ern and
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Guermond [14H17]; Samarskii and Andreev [18], Marchuk and Agoshkov [19]; Demkowicz
and Gopalakrishnan [20] or Larsson and Thomée [21]) but they did not present any solutions
of the initial-value problems. Many numerical experiments can be found in the monographs
of Zienkiewicz, Taylor, Norrie and de Vries [1}, 2, 22, 23] (mainly for solving the engineering
problems and for engineering applications) and by Fletcher [24] and Lynch [25] (for applying
FEM to ordinary and partial differential equations).

The first discussion on piecewise Hermite interpolation with applications to partial dif-
ferential equations is included in [26]. Then Strang and Fix [8] derived a difference scheme
for elliptic equations using Hermite cubic elements, and Durran [27] applied them to derive
a difference scheme for the advection equation with constant wind speed. A brief analysis
of the truncation error and the order of accuracy of the resulting method can also be found
in [27, p. 227]. However, the authors did not present the results of numerical experiments.

The theory of solving partial differential equations with Hermite elements is not very
popular. It is worth to notice that Durran presented a brief information to the cubic Hermite
expansion function in the first edition of his monograph [27, Sect. 4.5.4] but this fragment
is not included in the second edition [2§].

More popular both in theory and in practice, and in widely published numerical experi-
ments are approximations with piecewise linear chapeau functions |25, [29-H31] and piecewise
quadratic functions called Lagrange elements [25, (30} 32, 33].

The main theorems introducing the Hermite finite element theory are recalled in Sect. [I}
Difference schemes for the advection equation with the piecewise quadratic, cubic and quin-
tic Hermite elements are derived in Sect. [2l The initial and boundary conditions for all
nodal parameters and numerical experiments will be discussed in Sect. 2 in Part II of this
paper H The basis functions, the piecewise quintic Hermite polynomials, are presented in Ap-
pendix A. Our analysis follows Strang and Fix and expands it to quintic polynomials. The
terminology: piecewise quadratic and cubic is taken from the monographs of Strang and
Fix [8, |11}, |18, 34]. The piecewise quintic polynomial is a proposal of the author. Quintic
polynomials have not been published before.

1. The basic theorems

Let H: denote the space of functions with compact support whose derivatives of the order
g < s lie in L?. The following norms are associated with He:

le"1l5: = > 11Dz, le"Ifvy = Y 1D |lzw
jal<s jal<s

which measure of error:

e =u"—u

and its derivatives of the order |a| = > «; < s:

o0 \" o\
Da h — - . h
¢ (8951) (8%) ¢

— approximate solution, u — exact solution, and H?® is Sobolev W3 space.

where u”
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In our discussion the derivatives are continuous. Let us consider the following theorems
proved in 1970 by Strang and Fix [5] 26].

Theorem 1. (Strang, Fiz) Suppose ¢(x) is in HP. Then the following conditions are equiv-
alent:
(i) ©(0) # 0, but @(x) has zeros of order at least p+ 1 at the other points of 2nZ":
D*¢(2mj) =0 if j € Z"\{0}, |a| < p;
(ii) for|a| <p, > j*@¢(t—7) is a polynomial in ti, ..., t, with leading term Ct*, C' # 0;
JEZ
(iii) for each u(z) in HE'! there are weights w! such that as h — 0,

h _h
H PV

The constants ¢, and K are independent of u, ¢ — denotes the Fourier transform of
@ and Z" — set of the integer numbers. Where cp? — non-zero functions within only
a finite number of elements [5, p. 816].

< ullyess,  0<s<p, Y |l < Klfulf.

Theorem 2. (Strang, Fiz) Suppose p1(x), ..., pn(x) are in HI. Then the following condi-
tions are equivalent:
(i) there are linear combinations 1V, (x) of the @;(x) which satisfy

7;0(0) =1, 7$0(27Tj) =0 forjezZ"\{0},

3 D%t)_p(2mj)

gp 0 foralljeZ% 1< ol <p;

B

(ii) there are linear combinations . (x) of the v;(x) which satisfy

t 7 a—p(t — j)
JZZ A for |a] < p;
BLa j
(iii) for each u(x) € HP™Y, there are weights wffj such that for s =0, 1, ..., q,
Ju= D wliels]| < ek = llulbon, Y fly < Kl B,
2

where @Zj — the basis that the Rayleigh— Ritz — Galerkin principle will select an ap-
prozimation u (1)) (5, p. 799]; |a| = a1+ . .+ 2% =2t - 28 and ! = aq!- -yl

Theorems 1] and [2 are the basis of algorithms for constructing of Hermite basis functions
with effective interpolation properties and then for the difference schemes associated with
them.

The technique with piecewise Hermite interpolation by third degree polynomials was first
published in 1973 for the stationary equation [8, 11]:

—(pu') +qu=f. (1)

The Hermite difference equations for depend on the values of displacements (or heights)
[w;—1, w;, uiq1] and slopes [u]_,, uj, u;,]. This means that the FEM with Hrmite type elements
leads to a system of difference schemes.
Let us consider the 1-D initial-boundary value problem [7} |18, 24, |33H41]:
ou

E—FLU:F, (2)
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where: L — the first order time-independent operator, U is the vector of unknowns and F is
the vector of the right-hand side. We also assume that for (2|) one can define the corresponding
initial and boundary conditions. In geophysical fluid dynamics the shallow water or gravity
waves equations are the best examples for the system and for the vector U (27} 28, 42].

The initial condition describes the propagation of the jump to the right at a constant
speed ¢ = 1 and is the main condition for testing the majority of the property of the
difference method: errors of phase, dispersion (the decay or the growth of the sawtooth type
oscillations appearing in the solutions) and dissipation [43-47]. It served the initial condition
for modelling explicit schemes, such as: Lax—Wendroff [48-50], upstream, leapfrog |27, 51|,
Godunov, Crowley [52, [53], Zalesak [27] 28], Beam — Warming [54} 55|, Lax —Friedrichs [27]
or MacCormack [48, |56/, and implicit ones: classical Crank—Nicolson mixed linear and
quadratic finite-element Galerkin —Crank — Nicolson type, tridiagonal compact Lele scheme
of the fourth and sixth order |27, 28] and others. The initial condition (4]) can also be applied
to the little-known explicit schemes of Landau [57, p. 430] and Wendroff |21, p. 196]. It should
also be noticed that for linear advection the MacCormack and Lax—Wendroff difference
schemes have the same form. An exact analysis of both schemes for a scalar hyperbolic
conservation law and an irregular initial condition of the right-moving shock wave type is
presented in [48].

Linear advection equation for constant wind speed is also a good simple example:

ou ou B

which is consistent with the classic initial condition in the form:

up x < T,

_,,0 _
u(z,0) =u(x) = { . Uy > us. (4)
In Sect. [2| difference schemes are derived for the initial-value problem , assuming that
the solution uy(x,t) approaches by the following series:

1. For the Hermite piecewise quadratic (d=s=2) and piecewise cubic elements (d=s=3):

w(,0) = 3 wpl?@) + 3 0@, 5)
wn(.0) = 3 016 w) + Xl (00640 ©)

and then U = [u;(t), u}(t)]7.

) Y

2. For the Hermite piecewise fifth degree elements (d=s=c=5; d, s, ¢ — the elements

degree):
N—-1 N-—1 N—-1
up(z,t) = > w()el” (@) + Y i) (2) + D ul ()1 (@), (7)
=1 =1 =1
N—-1 N—-1 N—-1
d s c
un(,0) = > udy (0o (@) + 3wy (08 () + 3wl (03 (z)  (8)
=1 =1 =1

and then U = [u;(t), u}(t), u} (t)]".

) Y
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This means that in this paper, approximations , @ are applied twice, while approx-
imations , are applied only once. Approximations f lead to systems of implicit
difference schemes which always extend to only three mesh points: [i — 1,4, + 1]. The func-
tions ;(x) with the superscript (d) correspond to the displacement of the solution w;(t);
the functions ¢ (x;) with the superscript (s) correspond to the slopes w(t) of the solution
and the functions v;(z) with the superscript (¢) correspond to the curvatures u/(t) of the
solution. The difference schemes derived from and @ relate both the displacements and
the slopes [ui_l,ugfl,ui,u;,uiﬂ,ug +1] as unknowns, while the difference schemes derived
from (7)) and (&) relate both the displacements and the slopes with the curvatures (or bends)
[ui_l, UGy U Uy UG, Uy U1, U u;’“} as unknowns. Thus, finite element difference equa-
tions are systems of two equations in the case of and @ and a system of three equations
in the case of and . Despite the increase in the number of unknowns, as already
mentioned above, the schemes still extend to only three mesh points: [i —1,4,7 + 1].

2. The difference schemes in the Hermitian FEM spaces

FEM for advection or diffusion equations with Hermite elements always leads to systems of
implicit difference equations (see their forms presented below).

2.1. The Hermite piecewise-quadratic elements

In this case the series and @ take the form of:

N-1 N-1
2 2 2 2
=D i) @)+ D w0 (@), wnle,0) =D uly (0 (2)+ Y uily) (0)4 ().
i=1 i=1 1 i=1

The formulas for the Hermite elements cpEQ) () and 9, 2 (x) can be found in |18, p. 84]. Their
graphs are presented in Appendix A.

The piecewise quadratic Hermite approximation is given by a pair of implicit one-sided
approximation in the time difference equations:

Hy + ALy = Hy, o)
HYH AL =
where: A = ¢7/h — the Courant number, h — spatial step, 7 — time step, ¢ — constant
wind speed and:

Hy; = 56(ui—1 + wip1) + 368u; + 13h(u;_q — u;, ),
H;Z- = —13(wi—1 — uip1) — 3h(u;_y + uj ) + 10hu;,
Lo = 240(ui1 — ui—1) — 50h(u;_y — 2uj + ujy ),
Liy; = 50(ui—1 — 2u; + wip1) + 10h(u)_q — uj ).
Finally, the difference system @ takes the extended implicit form:
( 56(ul ! + a4+ 368ul T 4+ 13h(uM T — wtt )+
AU — ) — SR — 2+ o) =
= 56(uj"; + ujy,) + 368u; + 13h( ity — ),
—13(u — i) = 3h(u] + ulty) + 10k
+A(50(u; ”“ — 2uj™! +u?if) +10h(uy! — ufith)) =
= —13(u}" ; —u}y) — 3h(u | + ul+1) + 10hu;".
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The initial conditions U} = [ufy,,ujy]" for are determined on the base of the
projections:

18032
)= 23/‘ Wy (@) (1) + i () (2)d,
- CC,L 1 — _
< 480N1$l+1 k=1,... ,N—1. (11)
kh Z/’ ?(a) + s @0)0f2 (0)d

FEM for hyperbolic and parabolic problems with linear Lagrange elements leads to im-
plicit tridiagonal difference schemes of the Galerkin - Crank —Nicolson type and with La-
grange quadratic elements to pentadiagonal ones 25| 29].

Various variants of the Thomas algorithm [58] have been used to solve such difference
equations. Their forms are presented in [59-67]. In subsequent years this algorithm was
extended for three-point vector equations. The best examples of such systems are difference
schemes with the Hermite elements in 1-D.

Let us return to the initial-boundary value problem with ¢ = 1:

i LU=0, L=—. (12)

The difference system ([10) may be rewritten:
P, U + QU — R, UL = F! (13)
where: U; = (u;, u})T, Fy = (Hy;, Hy;)T and
P —(56 — 240\)  h(50A — 13) Q, — 368  100AA
27| —(=13+50)\) A(3—10)) |’ 27 | =100\ 10h |’
R, — —(56 + 240\) h(13 + 50N)
27| —(134+50)\)  h(3 4 10))
The procedure of solving the unsteady initial value problem of the type:

ou Ou ou  O%*u
=0 or =

o or o oz

using the Hermite elements leads to the system ([13]) which may be presented in the following
Thomas form:

CoU, — ByU, = F, i=0,
AU, +CU,-BUj, =F;, 1<i<N-1, (14)
_ANUp + CyUy = Fy, i— N

where: U; and F; are vectors and A;, C;, B; are 2x2 matrices and they correspond
to P;, Q;, R;, respectively. To solve the block-tridiagonal system of equations we apply
the method of elimination three-point vector equations similar to the method of eliminating
three-point scalar equations (see: [63] as well as |24, App. A—C]). We will seek the solu-
tion in the following form:

U, =Xin1 Ui + Yy, i=N-1,N-2,...,0
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where: X;;; — the set of the matrices of size 2x2, and Y,;,; — the set of the vectors of
dimension 2. Below are the well-known recurrence relations for calculating X;,; and Y, :

Xi+1 = (CZ - AiXZ')_lBZ', 1= 1, 2, . ,N - 1, X1 = CalBo, (CL)
Y= (G — AX) N F + AYy), i=1,2,...,N, Y, =C;'Fy, (b) (15)
U; =X¢+1U¢+1+Yi+1> i=N—-1,N—-2,...,0, Uy=Ypny. (¢

We say that ([15]) is stable if || X;|] < 1for 1 <i< N

2.2. The Hermite piecewise-cubic elements

The formulas of the Hermite elements go( () and w ( ) can be found in |11 |18, (19} 27].

(3

Their graphs are presented in Appendix A. Repeating the procedure described in Sub-
sect. we obtain:
n+1 n+1 n
S (16)
Hyi ™ + ALg;" = H;
where:
Hgi = 54(’&7;_1 + Ui+1> + 312U1 + 13h(u;_1 — ufi—l—l)?
Hy; = —13(uwim1 — wip1) — 3h(ui_y + uiiy) + 8hug,
L3i = 210(U1+1 — ’U,Z‘,l) — 42h(u;71 — 2’[,6; —+ U;Jrl),
Ll3z = 42(11,1'_1 — QUZ + Ui+1) + 7h(u;_1 — U;_H).
Implicit difference schemes for piecewise cubic Hermite elements have a form

[ 54(u™ ) + 31207t + 13h(u T — w4
FAIO( — ) — A2h(u) — 20 + o)) =
) = 54(uiy +ujlyy) + 3120 "’ 13h( Uity = Ui,

—13(uft! - u?—jll) — 3h(u"T + U;T{l) + 8hu +

FAA2(u = 20 4 u;:ql) + Th(uf ' —ulih)) =

(= B(ul, —uiy) - 3h( it “z+1) + 8hu".

The initial conditions U? = [ufy,, ujly)|" for are similar to (11). The abbreviated
form of ([2.2)) is presented below:

—P; U + QU — RyU, = FY

where: U; = [u;, u})T, F; = [Ha;, H;,]"T and
—(54—210)) h(42XA—13) Qs— 312 84\h R.— —(544210X) h(13+42))
—(=13+42))  h(3=TA\) | T | -84\ 8h ST —(13+442))  A(3+TN)

P;=

2.3. The piecewise fifth degree Hermite elements

The formulas for the elements cpz@ (z), ¢(5)(w) and %.(5) (z) and their graphs are presented in

7

Appendix A. In this case there is a triple node at each point z; = ih:

Z ui(t Z ) + Z
un(w,0) = > uls) (0o (x) + Z s (0)07 (x) + Z w (0)7
, =1 =1
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The following system of three difference equations is obtained:
HIF 4+ AL = HE,
Ho 4+ )\L’”“ H, (17)
H—/ln+1 T\ L//n+1 Hgn
where:

Hy; =6000(u;—1+uis1) + 43440u; + 1812h(u;_; —uj, ;) + 181h*(u)_ 1+u2+1) + 562h%u,
HL, = —1812(uj—1 — ui1) — 532h(u)_, + um) + 1664hu; — 52h*(u_; —ul,;),
HY = 181(uj—1 — wip1) + 562u; + 52h(u)_; — uj, 1) + 5h*(u)_ + um) + 12h%uf,
Lsi = 27720(wi1 — ui—1) — 7260h(u;_y — 2u} + u},,) — 660 (u]_; —ul,,),
LL, = 7260(ui—y — 2u; + uipq) + 17160 (u,_; — ul ;) + 143h%(u_; + um) + 110R%u
LY = 660 (w1 — ui—1) — 143h(u}_y +ul,y) — 110hu) — 11R*(uf_y — ul ).

The system for the fifth degree Hermite elements is presented below:
—P5Un + Q Un+1 R5U?J-r‘r11 — F;’L

F; = [Hs;, HL,, HZ]T and

@) Z]

—6000 + 27720\ h(—1812 + 7260)) h2(—181 + 660))
Ps= | 1812—7260A  h(532—1716)\)  K2(52—143)) |,
—181 4+ 660X  h(=52+143))  h2(—=5+ 11))
43440 14520M\h  562h2

Qs = | —14520\ 1664k  110AA* |,
562  —110Ah  12h2

—6000 — 27720\  h(1812 + 7260)\) —h*(181 + 660))
Rs;= | —1812—7260\ h(532+ 1716)) —h?(52 + 143))
—181 — 660\ h(52 4 143)\) —h*(5 + 11))

where U; = [u;, u)

The difference schemes for the fifth degree Hermite elements have the form:

(6000(u + ultl) 4 434400l + 27720 (u — w4+ 1812k (uM T — wtt ) —
_7260h>\( /n—‘rl 2 /’n-‘rl + U;Z:"l_l) + 181h2( //n+1 _I_ u;/lbii_l) + 562h2 //n+1_
—660h>\(u)" u;’ﬁl) = 6000(u}_; + ul' ) + 43440u + 1812h(ul™ ; — uf )+
+181R% (ufy + uf}y) + 562h°u]™,

—1812(u ! — ulh) + 7260w — 2uf T + ulE) — 532h(u ! + ult )+
+1664hu’”+1 + 1716hN (u)™ ’”“ — uhh) — 52R* (u!m ug’ffl)+
+143R° A (u!™ + ul T + 110h2)\u”"+1 1812( —ulg)—
—532h( "L ut) + 1664hul — 52R% (ul") — u;’zl)

181 (uf ! — ulth) + 562u T 4+ 660N (ul — ) + 52h(u T — wltih)—

—143h>\( /n—&l—l _i_u;?i—ﬁl—l) o 110h}\uln+1 +5h2( //n+1 _i_u;/j:il—l) + 12h2 //n+1_

—11R* A (u U;TILI) = 181(uiy — uyy) + 562“ + 52h(ui — Uz+1>+
+5R% (w4 ) + 120%™

(18)
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Conclusions

In this paper three systems of difference schemes for the linear advection equation are derived,
constructed on the basis of the FEM theory with piecewise quadratic, cubic and quintic
Hermite elements. An irregular initial condition described the displacement of a jump moving
to the right. To solve these implicit systems @D, and a three-point vector variant of
the Thomas algorithm 58] was applied. It is well-known that this algorithm itself can develop
oscillations with very different amplitudes. This is especially disadvantageous in the case of
irregular initial conditions. They can be generated by recurrence relations for calculating the
matrices X;;; and vectors Y,;; 1 from (15, (a) and (b). They are determined from the left
boundary to the right for i = 1,2,...,N — 1 and for + = 1,2,..., N, respectively. And the
following relation for calculating the solution vector U; from the right boundary to the left
fori=N—1,...,0 (see: (15), (¢)).

The numerical experiment will be presented in the future workd.

Appendix A: definitions of ¢ (x;), v (x;), v (x;) and the graphs
of 127 ay), 17,

The Hermite elements of the fifth degree goz ( ), w( )(x) and %»(5)(13) have not been yet
published (Fig. [1). Their forms are presented below:

5 4 3
T — Tj— r — Ti— r — Tj—

(5) 5 4 3
0, ¢ (wi1+zin1),

(z —20)° (x — @i1) (z —20)°

R B R T
;X)) = T — Tit+1 T — Tip T — Ti41
0—3 ¢h? -7 > 13 —4 72 , X <z < Tit1,
9 x 'I’L—l : 'TZ+1 )
_ 5 o )4 )3
(5) _ — .
v (@) —0 5(96 :?H) _ h€z+1) -0 5@ ;ZH) ;o <o < xyy,

It is easy to check that they satisfy the conditions .

( %(5) (mz) =1, 901(55) (3%‘—1) = 90555) (%’H) = 0,5
! ! /
%‘( )(xz) = %’( )(xi— ) = %( )($i+1) = 0;

1/11-(5)(%;) = 1/11-(5)(%;—1) = ¢§5)($i+1) = 0; (19)
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0.8 -
0.6 -
0.4+

(5)
b (x
02l ;" (%)

Tit1

-0.2

Fig. 1. The graphs of the piecewise quintic basis functions family

a b
12— ‘ ‘ : 12— : :
1 e @)
0.8] o (@)
0.8]
0.6
0.6
04}
04}
0.2}
0.2+ 4 g
0
x?\% " o
0 i
Tit1 0.2 Y=z
02l ‘ : ‘ : —04

Fig. 2. The graphs of the ¢35 (z;)s (a) and 335 (z;)s (b) basis functions: the quadratic
elements — blue line, the cubic elements — red line and the elements of the fifth degree — green
line; the tangent to the 1[)1(2’3’5) (z) for = x; — brown line

The graphs of the basis functions ¢2%% (z;)s and ¢35 (2;)s (Fig. [2)) differ slightly. One
may even say that it is unnoticeable. But the solutions of u(*3?)(z;) and v/ (z;) differ very
strongly. Especially the values of the second nodal parameters u/*%(z;) and u'® (z;). Nu-
merical experiments will be discussed in Sect. 2 of Part II of this paper I.
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